
Item Popularity

Prediction

x̂ui =
#interactions with item i

#interactions

Power-Law Nature of
#Interactions

Frequency Distribution of Movielens-20M Ratings

Pros & Cons

+ simple & e�cient

+ no parameters to train

+ solves cold-start problem

+ works well due to power-law
nature of interactions

� no tailoring of
recommendations to users’
specific preferences

Matrix Factorization (MF)

Prediction

x̂u,i = hxu,xii + µu + µi + µ

Training Objective
Squared Loss or BPR Loss

COVER FE ATURE

COMPUTER 44

vector qi � R f, and each user u is associ-
ated with a vector pu � R f. For a given item
i, the elements of qi measure the extent to
which the item possesses those factors,
positive or negative. For a given user u,
the elements of pu measure the extent of
interest the user has in items that are high
on the corresponding factors, again, posi-
tive or negative. The resulting dot product,
qi

T pu, captures the interaction between user
u and item i—the user’s overall interest in
the item’s characteristics. This approximates
user u’s rating of item i, which is denoted by
rui, leading to the estimate

r̂ui

= qi
T pu. (1)

The major challenge is computing the map-
ping of each item and user to factor vectors
qi, pu � R f. After the recommender system
completes this mapping, it can easily esti-
mate the rating a user will give to any item
by using Equation 1.

Such a model is closely related to singular value decom-
position (SVD), a well-established technique for identifying
latent semantic factors in information retrieval. Applying
SVD in the collaborative filtering domain requires factoring
the user-item rating matrix. This often raises difficulties
due to the high portion of missing values caused by sparse-
ness in the user-item ratings matrix. Conventional SVD is
undefined when knowledge about the matrix is incom-
plete. Moreover, carelessly addressing only the relatively
few known entries is highly prone to overfitting.

Earlier systems relied on imputation to fill in missing
ratings and make the rating matrix dense.2 However, im-
putation can be very expensive as it significantly increases
the amount of data. In addition, inaccurate imputation
might distort the data considerably. Hence, more recent
works3-6 suggested modeling directly the observed rat-
ings only, while avoiding overfitting through a regularized
model. To learn the factor vectors (pu and qi), the system
minimizes the regularized squared error on the set of
known ratings:

min
* *,q p (,)u i �

£
K

(rui
 qi
Tpu)

2 + L(|| qi ||
2 + || pu ||

2) (2)

Here, K is the set of the (u,i) pairs for which rui is known
(the training set).

The system learns the model by fitting the previously
observed ratings. However, the goal is to generalize those
previous ratings in a way that predicts future, unknown
ratings. Thus, the system should avoid overfitting the
observed data by regularizing the learned parameters,
whose magnitudes are penalized. The constant L controls

recommendation. These methods have become popular in
recent years by combining good scalability with predictive
accuracy. In addition, they offer much flexibility for model-
ing various real-life situations.

Recommender systems rely on different types of
input data, which are often placed in a matrix with one
dimension representing users and the other dimension
representing items of interest. The most convenient data
is high-quality explicit feedback, which includes explicit
input by users regarding their interest in products. For
example, Netflix collects star ratings for movies, and TiVo
users indicate their preferences for TV shows by pressing
thumbs-up and thumbs-down buttons. We refer to explicit
user feedback as ratings. Usually, explicit feedback com-
prises a sparse matrix, since any single user is likely to
have rated only a small percentage of possible items.

One strength of matrix factorization is that it allows
incorporation of additional information. When explicit
feedback is not available, recommender systems can infer
user preferences using implicit feedback, which indirectly
reflects opinion by observing user behavior including pur-
chase history, browsing history, search patterns, or even
mouse movements. Implicit feedback usually denotes the
presence or absence of an event, so it is typically repre-
sented by a densely filled matrix.

A BASIC MATRIX FACTORIZATION MODEL
Matrix factorization models map both users and items

to a joint latent factor space of dimensionality f, such that
user-item interactions are modeled as inner products in
that space. Accordingly, each item i is associated with a

Geared
toward
males

Serious

Escapist

The Princess
Diaries

Braveheart

Lethal Weapon

Independence
Day

Ocean’s 11
Sense and
Sensibility

Gus

Dave

Geared
toward

females

Amadeus

The Lion King Dumb and
Dumber

The Color Purple

Figure 2. A simpli!ed illustration of the latent factor approach, which
characterizes both users and movies using two axes—male versus female
and serious versus escapist.

Pros & Cons

+ Fast & e�cient predictions
tailored to user’s tastes

+ Well-established model with
lots of extensions (ALS, time
incorporation, online algs.,
Non-neg. MF, . . .)

+ Interpretability

+ Usable with MIPS

� Fails to learn user-user and
item-item similarities

� Prediction is only a bi-linear

Image Source: “Matrix factorization techniques for recommender systems” Y Koren, R Bell, C Volinsky

Collaborative Metric Learning (CML) (1/3)4

Embedding of users and items in a metric space (U ·[I, d) with
distance metric d(u, i).

User

Positive	item

Imposter

Margin

Gradients

Before After

Figure 1: An illustration of collaborative metric learning. The hinge loss defined in Eq. 1 creates a gradient
that pulls positive items closer to the user and pushes the intruding impostor items (i.e., items that the user
did not like) away until they are beyond the safety margin.

• We do not have the Lpull term because an item can
be liked by many users, and it is not feasible to pull
it closer to all of them. However, our push loss pulls
the positive items closer to the user when there are
impostors.

• We adopt a weighted ranking loss to improve the Top-
K recommendations described in the next subsection.

3.2 Approximated Ranking Weight
We use a rank-based weighting scheme, called Weighted

Approximate-Rank Pairwise (WARP) loss, proposed by We-
ston et al. to penalize items at a lower rank [50]. Given
a metric d, let J denote the total number of items and
rankd(i, j) denote the rank of item j in user i’s recommen-
dations 5, we penalize a positive item j based on its rank by
setting

wij = log(rankd(i, j) + 1).

This scheme penalizes a positive item at a lower rank much
more heavily than one at the top, and produces the state-
of-the-art results in many prior works [50, 53, 28]. However,
computing rankd(i, j) at each gradient descent step is rather
expensive.

Weston et al. proposed to estimate rankd(i, j) through
a sequential sampling procedure that repeatedly samples a
negative item until we find an impostor [50]. Specifically,
let N denote the number of negative items we need to sam-
ple to find an impostor k that has non-zero loss in Eq. 1,
the rankd(i, j) is then approximated as � J

N �. This proce-
dure is similar to negative sample mining commonly used
in object detection where easy but non-informative negative
samples dominate the training set [7]. The number of neg-
ative samples N is usually bounded by a constant U = 10
or 20 to avoid an extended sampling time [27, 53]. In our
work, however, we replace this sequential procedure with a
parallel procedure to utilize the massive parallelism enabled
by modern GPUs:

1. For each user-item pair (i, j), sample U negative items
in parallel and compute the hinge loss in Eq. 1.

50 � rankd(i, j) < J , and the top item’s rankd(i, j) = 0

Figure 2: A learnable transformation function f is
used to project item features (e.g., image pixels)
into the user-item joint space. The projections are
treated as a Gaussian prior for items’ locations.

2. Let M denote the number of imposts in U samples,
rankd(i, j) is then approximated as �J�M

U �

It might seem wasteful to always sample U negative items.
However, empirically, we find that CML pushes the positive
items to a high rank rather quickly after the first few epochs.
Therefore, in most cases, we need to sample a similar number
of negative items in order to find an impostor, even with the
sequential procedure.

3.3 Integrating Item Features
As mentioned in Section 2.1, the original idea of metric

learning is to learn a transformation function f that projects
the raw inputs to an euclidean space [51]. We adopt a sim-
ilar idea to integrate item features that are often available
in a recommendation system; such as items’ text descrip-
tions, tags, or image pixels.6 Let xj � Rm denote the m-
dimensional raw feature vector of item j, as illustrated in
Figure 2, we learn a transformation function f that projects
xj to the joint user-item space described earlier. As the
6Note that the same formulation can be applied to user fea-
tures as well.

User

Positive Item

Gradients

Negative Item

4
“Collaborative Metric Learning”, C K Hsieh, L Yang, Y Cui, T Y Lin, S Belongie, D Estrin

Collaborative Metric Learning (CML) (2/3)

Profits from the phenomenon of similarity propagation, because
distance metric d respects the triangle inequality:

8u, i, j : d(i, j)  d(u, i) + d(u, j)

! Similarity of (u, i) and (u, j) is propagated to (i, j).

projection f(xj) should, to some extent, capture item j’s
characteristics, we penalize the item j’s eventual location
in the space (i.e., vj) when vj deviates away from f(xj).
Specifically, let � denote the parameters of the function f ,
we define the following L2 loss function:

Lf (�,v�) =
�

j

�f(xj, �) � vj�2.

This loss function essentially treats f(xj) as a Gaussian prior
to vj , and we fine-tune the location of vj when we have more
information about it (i.e., more ratings). Note that the func-
tion f is trainable, and during the training, we simultane-
ously minimize Lf and metric loss Lm described earlier to
make function f and v� mutually inform each other. Specif-
ically, the transformation function f is informed by v� and
learns to pick up the features that are most relevant to users’
preferences; and v� is informed by f in a way that the items
with similar features will tend to be clustered together and
improve the metric accuracy especially for less-rated items.
We choose multi-layer perceptron (MLP) with dropout
as our transformation function f for its superior representa-
tional capacity and ease of training [14, 5].

3.4 Regularization
A proper regularization scheme is crucial to the feasibility

of the proposed model. Our model essentially projects users
and items to a joint r-dimensional space. The number of
dimensions determines the representational capacity of the
model. However, a kNN-based model like the one we pro-
pose is known to be ine�ective in a high-dimensional space
if the data points spread too widely (i.e., the curse of di-
mensionality) [11]. Therefore, we bound all the user/item
u� and v� within a unit sphere, i.e.,

�u��2 � 1 and �v��2 � 1,

to ensure the robustness of the learned metric. Note that,
unlike many matrix factorization models, we do not regular-
ize the L2-norm of v� or u�. Regularizing L2-norm creates
a gradient that pulls every object toward the origin. It is
not applicable here because the origin in our metric space
does not have any specific meaning.

Another regularization technique we use is covariance reg-
ularization recently proposed by Cogswell et al. [9] used to
reduce the correlation between activations in a deep neu-
ral network. We found the same principle is also useful in
de-correlating the dimensions in the learned metric. Let yn

denote an object’s latent vector where an object can be a
user or an item, and n indexes the object in a batch of size
N . The covariances between all pairs of dimensions i and j
form a matrix C:

Cij =
1
N

�

n

(yn
i � µi)(y

n
j � µj),

where µi = 1
N

�
n yn

i . We define the loss Lc to regularize
the covariances:

Lc =
1
N

(�C�f � �diag(C)�2
2),

where � · �f is the Frobenius norm. As covariances can be
seen as a measure of linear redundancy between dimensions,
this loss essentially tries to prevent each dimension from
being redundant and encourages the whole system to more
e�ciently utilize the given space.

!"

!#

1 2

1

2

!"

!#

1 2

1

2

Matrix	Factorization Collaborative	Metric	Learning

User Item

$# $%

$"

$#
$%

$"

&# &"
$#
$"
$%

Figure 3: Example latent vector assignments for ma-
trix factorization and CML. The table on the right
shows user/item’s preference relationships.

3.5 Training Procedure
The complete objective function of the proposed model is

as follows:

min
�,u�,v�

Lm + �fLf + �cLc

s.t. �u��2 � 1 and �v��2 � 1,

where �f and �c are hyperparameters that control the weight
of each loss term. We minimize this constrained objec-
tive function with Mini-Batch Stochastic Gradient Descent
(SGD) and control the learning rating using AdaGrad [10],
as suggested in [28]. Our training procedure is as follows:

1. Sample N positive pairs from S
2. For each pair, sample U negative items and approxi-

mate rankd(i, j) as described in Section 3.2

3. For each pair, keep the negative item k that maximizes
the hinge loss and form a mini-batch of size N .

4. Compute gradients and update parameters with a learn-
ing rate controlled by AdaGrad.

5. Censor the norm of u� and v� by y� = y
max(�y�,1) .

6. Repeat this procedure until convergence.

3.6 Relation to Other Models
In this subsection, we describe the relation between CML

and other collaborative filtering models. At a high level, the
formulation of CML is similar to that of BPR or other pair-
wise matrix factorization models described in Section 2.3.1.
However, the fact that these matrix factorization models
rely on dot product, which does not satisfy the triangle in-
equality, leads to two important consequences illustrated in
the following.

Figure 3 shows three equally-sized groups of users labeled
as U1, U2 and U3, where U1 liked item v1, U2 liked item
v2, and U3 liked both item v1 and v2. Figure 3 shows a
stable setting for a matrix factorization system. The setting
is stable in a way that the dot product between user/item
vectors= 2 when the user liked the item, otherwise their
dot-product= 0. However, an important observation is that
the dot-product between the item v1 and item v2 is 0 even
if U3 like both of them. This violates the triangle inequality
because the positive relationships between the pairs (U3, v1)

! User-user and item-item similarities automatically learned.

Collaborative Metric Learning (CML) (3/3)

Prediction

x̂ui = �d(xu,xi)

Training Objective
WARP Loss with Cov. Reg.

L(✓) = Lm(✓) + �⌦(✓) s.t. kx⇤k  1.

Lm(✓) =
X

(i,j)2S

X

(u,k) 62S

wij
⇥
m + d(xu,xi)

2 � d(xu,xj)
2
⇤
+

,

Pros & Cons

+ Benefits from similarity
propagation ! user-user &
item-item similarities
automatically learned

+ Interpretability

+ LSH possible

� Metric space geometry must
suit the latent geometry

Hyperbolic Recommender Systems (1/2)6

Harness hyperbolic metric space to represent the relevances.

Amazon Sports Embeddings

Clothing, Shoes and Jewelry Sports and Outdoors Cell phones and Accessories Toys and Games

Tools & Home Improvements Automotive Patio, Lawn and Garden Musical Instruments

Figure 3: Two-dimensional hyperbolic embedding of 8 Amazon datasets in the Poincaré disk. The images illustrate the embed-
ding of user and item pairs after the convergence.

Implementation Details We implement all models in
Tensorflow. All models are trained using Adam (Kingma
and Ba 2014) with a learning rate is tuned amongst
{0.001, 0.005, 0.01}. The embedding size d of all models
is tuned amongst {50, 100, 150} and selectively set to 100.
The number of batch B is tuned amongst {10, 100, 1000}.
For models that optimize the hinge loss, the margin � is
tuned amongst {0.1, 0.2, 0.5}. The NCF and MLP models
are implemented following the configuration and architec-
ture in (He et al. 2017); however, the pretrained MF and
MLP are not applied to NCF for a fair comparison. All the
embeddings and parameters are randomly initialized using
the Gaussian distribution with mean of 0 and standard devia-
tion of 0.01. For most datasets and baselines, we empirically
set the hyperparameters with the learning rate of 10�3, the
number of batches is 10, the embedding size of 100 and the
margin is set to 0.1.

Experimental Results
This section experimentally presents our results on all

datasets. For all obtained results, the best result is in boldface
whereas the second best is underlined. As reported in Ta-
ble 3, our proposed model significantly outperforms all the
baselines on both HR@10 and nDCG@10 metrics across all
datasets.

Pertaining to the baselines, CML outperforms other base-
lines in most of the datasets. We observe that the perfor-
mance of MF and CML is extremely competitive, i.e. both
MF and CML consistently achieve good results across the

datasets. The performance gain of CML on the datasets is
approximately 1%-2%. Notably, the performance of MF is
much better than CML on Patio dataset. One possible rea-
son is that for the small datasets with high density (e.g., Patio
with density of 39.24%), a simple model such as MF should
be considered as a priority choice. In addition, the perfor-
mance of NCF is often only comparable to vanilla MLP
and MF in most cases. The explanation is because of using
the dual embedding spaces (since NCF combines MLP and
MF), this kind of usage could possibly lead to the overfitting
if the dataset is not large enough (Tay, Anh Tuan, and Hui
2018).

Remarkably, our proposed model HyperBPR significantly
outperforms the best baseline method. The percentage im-
provements in term of nDCG on eight datasets (in the same
order as reported in Table 3) are +3.39%, +2.50%, +2.83%,
+5.54%, +2.00%, +3.76%, +5.72% and +2.45% respec-
tively. We also observe similar high performance gains on
the hit ratio (HR@10). Note that the Amazon datasets follow
power-law distribution due to its rich and detailed category
hierarchy (McAuley et al. 2015). Therefore, it enables us to
achieve very competitive results of our proposed HyperBPR
in the hyperbolic space over other strong Euclidean base-
lines. Informally, since trees require an exponential space
for branching in which only hyperbolic geometry has this
characteristic, trees prefer to be embedded in the hyperbolic
space instead of Euclidean space. In other words, trees can
be considered as discrete hyperbolic spaces (Krioukov et
al. 2010). Our experimental evidence shows the remarkable

Poincaré Ball

Motivation:5

Power-law nature of
bi-partite interaction graph

 ! Complex
Networks

 ! Hyperbolic
Geometry

5
“Hyperbolic geometry of complex networks”, D Krioukov, F Papadopoulos, M Kitsak, A Vahdat, M Boguná

6
“Hyperbolic recommender systems”, T D Q Vinh, Y Tay, S Zhang, G Cong, X L Li

“Scalable Hyperbolic Recommender Systems” B. P. Chamberlain, S. R. Hardwick, D. R. Wardrope, F. Dzogang, F.
Daolio, S. Vargas

Hyperbolic Recommender Systems (2/2)

Prediction
x̂ui = �↵d(xu,xi), ↵ > 0.

Figure 2: Illustration of our proposed HyperBRP architec-
ture.

where (i, j, k) is the triplet that belongs to the set D that
contains all pairs of positive and negative items for each
user; � is the logistic sigmoid function; ⇥ represents the
model parameters; and � is the regularization parameter.

Gradient Conversion. The parameters of our model are
learned by using RSGD (Bonnabel 2013). As similar to
(Nickel and Kiela 2017), the parameter updates have the
form:

✓t+1 = R�t(��t�RL(✓t)), (7)

where R�t denotes a retraction onto B at ✓; �t is the learn-
ing rate at time t; and �RL(✓t)) is the Riemannian gradient
with respect to ✓.

The Riemannian gradient �R is then calculated from the
Euclidean gradient by rescaling �E with the inverse of the
Poincaré ball metric tensor:

�R =
(1 � k✓tk2)2

4
�E . (8)

The details of gradient conversion can be referred to
(Nickel and Kiela 2017; Tay, Tuan, and Hui 2018).

Experiments
Experimental Setup

In this section, we introduce the overall experimental
setup.

Datasets For our experimental evaluation, we adopt eight
datasets from Amazon datasets (He and McAuley 2016a).
The selection is based on promoting diversity based on
dataset size and domain, in which we ensure the inclusion
of both large/small datasets across various domains. The
datasets can be obtained at http://jmcauley.ucsd.
edu/data/amazon/ with their domain names truncated

Dataset Interactions # Users # Items % Density
Clothing 235,906 7,917 171,760 1.74
Sports 113,119 3,740 54,744 5.53

Cell Phones 32,885 1,141 18,797 15.33
Toys & Games 111,301 3,143 61,733 5.74
Tools & Home 64,182 2,047 35,793 8.76

Automotive 34,167 1,211 26,096 10.81
Patio/Lawn 10,702 374 7,293 39.24

Musical 16,501 471 12,206 28.70

Table 2: Statistics of all datasets used in our experimental
evaluation

in the interest of space. The statistics of the datasets are re-
ported in Table 2.

Evaluation Setup and Metrics We experiment on the
collaborative ranking (or one-class collaborative filtering)
setup. We adopt Hit Ratio (HR@10) and nDCG@10 (nor-
malized discounted cumulative gain) evaluation metrics,
which are well-established ranking metrics for the task at
hand. Following (He et al. 2017; Tay, Anh Tuan, and Hui
2018), we randomly select n negative samples which the
user have not interacted with and rank the ground truth
amongst these negative samples. We set n = 100 since
we empirically found this to be sufficient for probing differ-
ences in relative performance amongst compared baselines.
For all datasets, the last item the user has interacted with is
withheld as the test set while the penultimate serves as the
validation set. During training, we report the test scores of
the model based on the best validation scores.

Compared Baselines In our experiments, we compare
with five well-established and competitive baselines.
• Bayesian Personalized Ranking (BPR) (Rendle et al.

2009) is a strong collaborative filtering (CF) baseline that
takes three inputs include users, positive items, and neg-
ative items. The triplet objective is to rank positive item
higher than negative item for that user.

• Multi-layered Perceptron (MLP) is a feedforward neu-
ral network that applies multiple layers of nonlinearities
to capture the relationship between users and items. Fol-
lowing (He et al. 2017), we use a three layered MLP with
a pyramid structure.

• Matrix Factorization (MF) is the standard baseline for
recommender systems. It models the user-item represen-
tation using the inner product.

• Neural Collaborative Filtering (NCF) (He et al. 2017) is
the state-of-the-art method for collaborative filtering. The
key idea of NCF is to fuse the last hidden representation
of MF and MLP together into a joint model.

• Collaborative Metric Learning (CML) (Hsieh et al.
2017) is a strong metric learning baseline that learns user-
item similarity using the Euclidean distance. CML can be
considered a key ablative baseline in our experiments, sig-
nifying the difference between Hyperbolic and Euclidean
metric spaces.

Training Objective (BPR)

L(✓) =
X

(u,i,j)2D

� log (� (↵ (d(xu,xj) � d(xu,xi)))) ,

Pros & Cons

+ Similarity propagation

+ Interpretability

+ LSH possible

� Prediction power depends on
suitability of geometry

Neural Collaborative Filtering (NCF)3

Prediction

1000 0 0 ……
User (u)

0000 1 0 ……
Item (i)

MF User Vector MF Item Vector

GMF Layer ……

Score TargetTrainingŷui yui

MLP Layer 1

MLP User Vector MLP Item Vector

Element-wise
Product

Concatenation

MLP Layer 2

MLP Layer X

NeuMF Layer

Log loss
𝝈

ReLU

ReLU

Concatenation

Figure 3: Neural matrix factorization model

so that they can mutually reinforce each other to better
model the complex user-iterm interactions?

A straightforward solution is to let GMF and MLP share
the same embedding layer, and then combine the outputs of
their interaction functions. This way shares a similar spirit
with the well-known Neural Tensor Network (NTN) [33].
Specifically, the model for combining GMF with a one-layer
MLP can be formulated as

ŷui = �(hT a(pu � qi + W

�
pu

qi

�
+ b)). (11)

However, sharing embeddings of GMF and MLP might
limit the performance of the fused model. For example,
it implies that GMF and MLP must use the same size of
embeddings; for datasets where the optimal embedding size
of the two models varies a lot, this solution may fail to obtain
the optimal ensemble.

To provide more flexibility to the fused model, we allow
GMF and MLP to learn separate embeddings, and combine
the two models by concatenating their last hidden layer.
Figure 3 illustrates our proposal, the formulation of which
is given as follows

�GMF = pG
u � qG

i ,

�MLP = aL(WT
L(aL�1(...a2(W

T
2

�
pM

u

qM
i

�
+ b2)...)) + bL),

ŷui = �(hT

�
�GMF

�MLP

�
),

(12)
where pG

u and pM
u denote the user embedding for GMF

and MLP parts, respectively; and similar notations of qG
i

and qM
i for item embeddings. As discussed before, we use

ReLU as the activation function of MLP layers. This model
combines the linearity of MF and non-linearity of DNNs for
modelling user–item latent structures. We dub this model
“NeuMF”, short for Neural Matrix Factorization. The deriva-
tive of the model w.r.t. each model parameter can be cal-
culated with standard back-propagation, which is omitted
here due to space limitation.

3.4.1 Pre-training
Due to the non-convexity of the objective function of NeuMF,

gradient-based optimization methods only find locally-optimal
solutions. It is reported that the initialization plays an im-
portant role for the convergence and performance of deep
learning models [7]. Since NeuMF is an ensemble of GMF

and MLP, we propose to initialize NeuMF using the pre-
trained models of GMF and MLP.

We first train GMF and MLP with random initializations
until convergence. We then use their model parameters as
the initialization for the corresponding parts of NeuMF’s
parameters. The only tweak is on the output layer, where
we concatenate weights of the two models with

h �
�

�hGMF

(1 � �)hMLP

�
, (13)

where hGMF and hMLP denote the h vector of the pre-
trained GMF and MLP model, respectively; and � is a
hyper-parameter determining the trade-o� between the two
pre-trained models.

For training GMF and MLP from scratch, we adopt the
Adaptive Moment Estimation (Adam) [20], which adapts
the learning rate for each parameter by performing smaller
updates for frequent and larger updates for infrequent pa-
rameters. The Adam method yields faster convergence for
both models than the vanilla SGD and relieves the pain of
tuning the learning rate. After feeding pre-trained parame-
ters into NeuMF, we optimize it with the vanilla SGD, rather
than Adam. This is because Adam needs to save momentum
information for updating parameters properly. As we ini-
tialize NeuMF with pre-trained model parameters only and
forgo saving the momentum information, it is unsuitable to
further optimize NeuMF with momentum-based methods.

4. EXPERIMENTS
In this section, we conduct experiments with the aim of

answering the following research questions:

RQ1 Do our proposed NCF methods outperform the state-
of-the-art implicit collaborative filtering methods?

RQ2 How does our proposed optimization framework (log
loss with negative sampling) work for the recommen-
dation task?

RQ3 Are deeper layers of hidden units helpful for learning
from user–item interaction data?

In what follows, we first present the experimental settings,
followed by answering the above three research questions.

4.1 Experimental Settings
Datasets. We experimented with two publicly accessible
datasets: MovieLens4 and Pinterest5. The characteristics of
the two datasets are summarized in Table 1.

1. MovieLens. This movie rating dataset has been
widely used to evaluate collaborative filtering algorithms.
We used the version containing one million ratings, where
each user has at least 20 ratings. While it is an explicit
feedback data, we have intentionally chosen it to investigate
the performance of learning from the implicit signal [21] of
explicit feedback. To this end, we transformed it into im-
plicit data, where each entry is marked as 0 or 1 indicating
whether the user has rated the item.

2. Pinterest. This implicit feedback data is constructed
by [8] for evaluating content-based image recommendation.

4http://grouplens.org/datasets/movielens/1m/
5https://sites.google.com/site/xueatalphabeta/
academic-projects

x x

Training Objective
Binary Cross-Entropy with neg. sampling

L(✓) = �
X

(u,i)2D

[xui log(x̂ui) + (1 � xui) log(1 � x̂ui)]

Pros & Cons

+ Non-linear prediction

+ Robust joint-model of
simple GMF and MLP

� Lacks interpretability

� Expensive prediction

� Cannot be used with
LSH or MIPS

3
“Neural collaborative filtering”, X He, L Liao, H Zhang, L Nie, X Hu, T S Chua,

Autoencoders for Collaborative Filtering2

Prediction x̂ui = h(xu, ✓)

Training Objective
Reconstruction/Prediction
Error or ELBO

Pros & Cons

+ Non-Linear ranking

+ No negative sampling needed

� Lack of interpretability

� No automatic discovery of
user-user item-item similarities

� Predictions over all users or
items ⇥(min |U | , |I|)

� LSH or MIPS not possible

Major Challenge: Sparsity of inputs/gradients

· Item-based RS

· Dense re-feeding: h(h(x)) = h(x)
2
“Autorec: Autoencoders meet collaborative filtering.” S Sedhain, A K M, S Sanner, L Xie

“Collaborative filtering with stacked denoising autoencoders and sparse inputs.”, F Strub, M Jeremie
“Training deep autoencoders for collaborative filtering”, O Kuchaiev, B Ginsburg
“Variational autoencoders for collaborative filtering”, D Liang, R G Krishnan, M D Ho↵man, T Jebara

